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Content-aware media applications require rich,
interconnected descriptions of media content.
FramerD is an object-oriented database developed
at the MIT Media Laboratory to support just such
descriptions in a scalable and distributed manner.
Conventional databases, even the newer object-
oriented ones, focus mostly on data structures
whose components are scalar or literal values,
rather than references to other objects. FramerD is
optimized to support objects that have
components consisting of references to other
objects in an environment where the storage of
and the operations over the objects are distributed
over local- and wide-area networks. This paper
discusses the design, implementation, and
performance of FramerD, and sketches some
current applications of the system.

f the most recent revolution in media systems has
been the shift to digital representations of such

media content as video and audio, the oncoming revo-
lution lies in the computer representation of the
“meaning” of this content. Such representations are
crucial if our media systems are to organize and filter
the growing mass of available content or to learn from
users’ actions in response to the information they are
provided. Good decisions and good generalizations all
rely on good representations; the design of such repre-
sentations and the infrastructure enabling them is nec-
essary in any future media architecture.

For the last five years, the Machine Understanding
Group atMIT’s Media Laboratory has been exploring
questions about media representations and the infra-
structure required to support them. This paper
describes FramerD, the current “state of our art” in
this work on infrastructure for “understood media.”

FramerD is a representation system providing a net-
work protocol for exchanging complex structured
objects, a simple persistent object store for managing
large databases of complex objects, and a collection
of tools for manipulating and indexing large semantic
network databases. FramerD grew out of an attempt to
apply past work in artificial intelligence (AI) to new
media systems. By and large, work inAI before 1990
was characterized by:

• Small problem sets (usually dozens, at most hun-
dreds, of examples)

• Limited domains of discourse (usually some partic-
ular human activity or problem class)

• Brittleness (when inputs varied from expectations
or domains briefly widened)

While these restrictions are tolerable when tasks can
be narrowly defined, they are unacceptable in the
more open-ended realm of media systems. Media can
be aboutanything and this universality complicates
the application ofAI techniques to experimental
media systems. This complication is further exacer-
bated by the demands of interactivity. Among Lipp-
man’s1 requirements for “good interactivity” are:
interruptability, graceful degradation, and impression
of infinity—all of which are confounded by the brit-
tleness and limitations of traditionalAI models. In
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order to prototype intelligent interactive media sys-
tems, we required:

1. Large numbers of examples (millions or tens of
millions)

2. Broad coverage (more than a single domain)
3. Robustness (in the face of both scaling up [in data-

base size] and scaling out [in domain coverage])

FramerD was designed to address the first and (in
part) third of these points. Our work on analogical
representations2 addresses the second and (in part)
third points by relying on a rich library of cases to
provide breadth, flexibility, and robustness. The cur-
rent version of FramerD robustly and efficiently sup-
ports semantic networks with up to millions of nodes
on platforms ranging from workstations to personal
computers to high-end personal digital assistants.
This scale of representation allows heavily memory-
based approaches to understanding, reasoning, and
interaction.

FramerD was also designed with portability and dis-
tribution of data and function in mind. Part of this was
a practical concern: we wanted to be able to move
functions (such as background batch processing of
databases, real-time interaction with users, or devel-
opment and prototyping) easily between machines
(fast memory-loaded machines, lightweight desktop
machines, slower machines supporting good develop-
ment environments, etc.). At the same time, we did
not want this division of labor to get in the way.

These concerns were addressed by introducing a com-
mon data level andRPC (remote procedure call) proto-
col that are used by all the different applications. Our

applications routinely use data and function servers
spread across the network. This also allows the con-
struction of very lightweight clients relying on net-
worked servers for most representational processing.

The FramerD layer cake

Like most large software systems, FramerD can be
characterized by a layer cake diagram, as shown in
Figure 1.

FramerD’s layered architecture supports its use as
either a data transport and storage system, a data orga-
nizing and indexing system, or an inferentially rich
expert system. Applications using FramerD at one
level can easily make use of higher-level facilities
when circumstances or the emerging task structure
make it convenient or important.

The lowest level, the data level, provides recursively
composable structures and primitives: vectors, lists,
numbers, strings, interned3 symbols, etc. Via the
Dtype protocol, these complex objects can be trans-
mitted and buffered much as a representation like Sun
Microsystems’ XDR (external data representation,
which underlies theirRPC andNFS [network file sys-
tem] protocols) handles simple strings and arrays. The
data layer also provides forobject references defined
by 64-bit unique object identifiers.

The next layer, the object layer, provides for the map-
ping of these references into data layer values. This
mapping can be imagined as providing a 64-bit
address space whose cells are complex structured
objects (including pointers elsewhere in the 64-bit
space). In parallel with the object layer, the index
layer provides for the maintenance of large inverted
indices whose keys and values are arbitrary Dtypes.
Both indices and object repositories are readily dis-
tributed across networks and architectures.

The tools layer uses the object and index layers to
provide basic representational facilities via a frame-
based language.4–6 These functions include slot-based
inference, object indexing, and fast analogical match-
ing.

A brief history.  In 1992, Nathan Abramson at the
Media Lab implemented Dtypes, a simple network
protocol for exchangingLISP-like objects. This was
used in news software being developed at the time. A
year and a half later, Klee Dienes took the Dtype
package and reimplemented it in C++, adding aLISP

Figure 1 Layered architecture of FramerD
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interpreter (for the Scheme dialect ofLISP) to allow
the use of interpreted programs or scripts within and
around the Dtype universe. Recently, this implemen-
tation has matured and has been ported to Java**
under the guidance of Dan Gruhl.

On a parallel track, the Lab’s Machine Understanding
Group had been developing a series ofAI languages
designed to be accessible to a large non-AI community
and to support fairly large databases. The first such
language, ARLOtje, was developed as a teaching tool
but ended up being used in a number of research
projects.7,8 One situational problem was that much of
the Lab’s work was done (for reasons both cultural
and technical) in the C programming language,9 while
the AI tools we developed were generally written in
CommonLISP.10

In the spring of 1992, we began the implementation of
Framer,11 a set of representation tools inLISP and C
that allowed data to be shared between them. Framer
incorporated a scripting language based on Scheme12

with the addition of special provisions for dealing
with sets and collections of arguments and return val-
ues. Framer also was used in a variety of prototype
systems at the Media Lab13–15 and was the structure
underlying our first work on relational retrieval from
large databases.

The development paths of Framer and Dtypes collided
in the spring of 1994, when FramerD was first devel-
oped (originally inLISP) by implementing procedures
for reading and writing Dtype representations from
LISP. This soon led to the implementation of Dtype
servers inLISP, allowing technology developed in the
Machine Understanding Group (for instance, a broad-
coverage natural language parser) to be accessed by
Dtype programs written by other groups.

At the time of FramerD’s development, the Dtype
protocol was being considered as a foundation for the
Lab’s Media Bank16 project. This required a database
facility for saving and retrieving Media Bank objects.
The first version of this technology used theGNU17

project’s GDBM (GNU database manager) library, but
this had several problems, the least of which was that
GDBM files were not generally portable across
machine architectures.

The Machine Understanding Group ended up devel-
oping its own portable database manager library and
database servers, which were interoperable with exist-
ing Dtype servers. At this point, we had also extended

Digital Equipment Corporation’s Scheme-to-C sys-
tem18 to include access to FramerD Dtype objects and
servers. This was used as the basis for a number of
Web-based demonstrations and for the next genera-
tion of our text retrieval and matching work.

In the spring of 1995, the FramerD implementation
was beginning to show some cracks. In particular, we
found that it was less efficient than the original
Framer for large-scale projects (in Framer, much con-
scious attention was paid to scaling and storage man-
agement issues) and that many common repre-
sentational functions were quite slow. This led to the
implementation of the current version of FramerD. In
the following sections we consider its design and
rationale.

Dtypes: The data level

Dtypes are designed for an environment where pro-
grams routinely use data structures with complicated
interconnections implemented by address pointers.
This is foundational in languages likeLISP or Scheme
and a common programming practice in C, C++, and
numerous other languages. These kinds of structures
are especially important for describing large semantic
networks, where most data values fall between nodes.
Dtypes are designed to provide an external representa-
tion for these internal structures and must support:

1. Fast conversion from external format to internal
structures

2. Compact representation (in terms of disk space
and bandwidth requirements)

3. Portability between C, C++,LISP, and Scheme (at
least)

4. Lightweight state-free parsing and production

Requirements (3) and (4) were important because of
our desire for architectural and political portability to
encourage adoption by other research projects within
the Lab, at other laboratories, and within sponsor
companies.

Why binary representation? For their internal struc-
tures Scheme andLISP already provide a printed rep-
resentation designed to be easily readable by both
people (with some acclimation) and machines. The
problem with the format is that some information
about the structure, useful for reconstituting objects
(for instance, numbers of characters or elements, pre-
cision of numeric values, etc.), is implicit, rather than
explicit, in the printed representation. For instance, a



HAASE  IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996384

string in the printed representation has the form
““characters”” where the number of characters in the
string (and the number of bytes in memory needed to
store it) is implicit in the specification.

This printed representation is the only external repre-
sentation provided byLISP and Scheme. By contrast,
schemes likeASCII (American National Standard
Code for Information Interchange) andEBCDIC
(extended binary-coded decimal interchange code)
provide an external representation that, although not
easily readable by people, is very readable by
machines and can be useful for internal representation
as well.

The standard printed representation for Scheme and
LISP fails to satisfy requirement (1) for Dtypes. Fur-
thermore, many of the quantities in the programs’
internal representations have natural binary represen-
tations. For these reasons we chose an external format
that was binary: thus, the length of the vector or the
value of a small integer can be directly written or read
without parsing some intermediate digital representa-
tion.

Some machine architectures, for instance Intel** pro-
cessors and Digital’s Alpha** chip, store 4-byte num-
bers in memory with the least significant byte first,
while others (the Motorola 68000 and the Power-PC*
chip) place the most significant byte first. In order to
ensure portability among machines with different byte
orderings, the Dtype representation normalizes all 4-
byte codes to place the most significant byte first.
Thus the protocol is state-free: it is not necessary to
know the byte ordering of the machine to which you
are transmitting (or from which you are receiving) a
Dtype representation for an object.

Dtype representations. Dtype representations are
either basic (consisting of a 1-byte type code followed
by a data field) or packaged (consisting of a 1-byte
package code followed by another byte or two of
extended type code and a data field). The data field
has five possible formats:

• Zero length, where the object is completely speci-
fied by the type code, is used for representing void
values and the empty list.

• Fixed width in bytes, where the data field has a
fixed number of bytes based on the type code alone,
is used for representing small integers, floating
point numbers, object identifiers, and Boolean val-
ues.

• Fixed width in Dtypes, where the data field consists
of some number of Dtype representations, is used
for pairs, compound tagged data types, and error
and exception values.

• Variable width in bytes, where the data field starts
with 1 or 4 bytes of size information followed by
the specified number of bytes, is used for strings,
symbols, bignums (arbitrary precision integers),
arbitrary packets of bytes, and various multimedia
representations.

• Variable width in Dtypes, where the data field starts
with 1 or 4 bytes of size information followed by
the specified number of Dtype representations, is
used for vectors, property lists, and nondeterminis-
tic sets.

Figure 2 illustrates a basic Dtype representation. At
offset 0 is the type code for a vector. The next four
bytes hold the number of Dtype fields that follow. At
offset 5 is the type code for a symbol, followed by 4
bytes that hold the length of the symbol, then the sym-
bol itself. At offset 13 is the byte code for a small inte-

Figure 2 Layout of a basic Dtype representation

#(AGE 34 HEIGHT 170)

dt_vector 0 0 0 4 dt_symbol 0 0 0 3 A G E dt_fixnum 0 0 0 34 dt_symbol 0 0 0 6 H E I G H T dt_fixmun 0 0 0 170

29181350
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ger followed by 4 bytes that contain the small integer.
Another symbol and small integer follow.

One important property of Dtypes is their support for
opaque data types. This means that an application can
implement its own data types while using standard
facilities for the carriage and storage of the data type.
The systems doing the carriage and storage do not
need to know how the data type is implemented, but
can generically handle the Dtype representation gen-
erated by the implementing client(s).

Opaqueness is implemented in two ways in the Dtype
representation. Most generally, a client data type can
be described by thecompound Dtype type tag fol-
lowed by a tag (a Dtype) and some data (another
Dtype). The tag indicates the type of the object and
can be either a symbol or, more portably, an object
reference. The data field contains another Dtype struc-
ture from which the object can be recreated.

A more efficient and specific form of opaqueness is
available through thepackage extensions to the Dtype

representation. The type codes greater than 127 are
reserved to identify “packages” of extended types. A
packaged Dtype representation consists of a 1-byte
package prefix, a 1-byte package identifier, a 1-byte
subtype identifier, a 1- or 4-byte size field, and a spec-
ified number of either bytes or Dtype representations.
The two highest-order bits of the subtype identifier
describe whether the size is in Dtypes or bytes and
whether the size field is 1 or 4 bytes, as shown in Fig-
ure 3. This allows packaged Dtypes to be read, stored,
and written without knowing anything about the
object represented.

Currently, four packages exist in various implementa-
tions:

• Extended numeric types (bignums, rational and
complex numbers, polynomials, and integer and
floating point vectors)

• Extended character types (ASCII and Unicode**
characters and Unicode strings and symbols)

• FramerD types (property lists and nondeterministic
sets)

Figure 3 Packaged Dtype representation
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• Multimedia types including standard image and
video formats:JPEG (Joint Photographic Experts
Group),MPEG-1 (Moving Pictures Experts Group),
MPEG-2, AIFF (Audio Interchange File Format), etc.

Three new data types. In addition to the standard
LISP data types, FramerD introduces three special
types: the object identifier, the feature vector, and the
result set. Object identifiers consist of 8 bytes and are
used by the FramerD object system, which maps
object identifiers into actual data-level objects. The
object system’s implementation is described in the
next section.

Feature vectors are sets of attribute/value pairs, much
like LISP property lists10 and are used for constructing
frame and semantic-network representations.

Result sets are unstructured collections of other data-
level objects (but not of other result sets). They were
first introduced in the design of Framer11 as a way to
avoid having to specify explicitly whether a function
or accessor returned or contained a single result or a
set of results. When combined with a nondeterminis-
tic interpreter,19,20,11 this allowed the elegant expres-
sion of many search and composition operations.
FramerD’s primitive scripting language supports the
same nondeterministic function application.

Related technologies. Nearly every LISP system
implements some kind of binary data format, usually
used for storing compiled programs and data. The ear-
liest versions were MacLisp’s “FASL (fast load) files,”
and subsequentLISP implementations have provided
some similar functionality. Dtypes differ from these
systems in being portable and in not supporting any
kind of compiled code (except that user objects could
be implemented for compiled procedures).

The chief virtue of this Dtype representation is sup-
posed to be its portability, a property that arises as
much from political and cultural compatibility as
from technical issues. To this end, we are making the
LISP, Scheme, and C implementations of FramerD
available for personal and research purposes with no
fee. The code can be downloaded from the labora-
tory’s FTP (file transfer protocol) site from the direc-
tory pub/framerd at the host ftp.media.edu. This site
includes sources for theLISP and C versions and exe-
cutable code for a dozen hardware platforms.

Pools: The object level

The FramerD object system is organized around 8-
byte object identifiers (OIDs) used to uniquely identify
objects. These identifiers define an address space seg-
mented into disjointsuperpools, which are further

Figure 4 Objects and pools
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segmented into disjointpools. Figure 4 shows the
relationship between superpools, pools, objects, and
OIDs. The first 4 bytes of theOID determine the super-
pool. The last 4 bytes give the offset within the super-
pool of the object’s address, which points to the
object’s data. TheOID of another object might be
included in the object’s data to implement an associa-
tion between the objects.

A pool is identified by itsbase (OID of the first object
in the pool) and a capacity (the total number of object
addresses in the pool). Capacities come in powers of
2, so the offset in an object identifier can always be
split into a pool identifier and an offset into the pool.
However, this segmentation is not defined syntacti-
cally (as in, for example, Internet addresses) but is
determined during the lookup process.

The use of 64-bit identifiers, as opposed to symbolic
names, arises from two distinct demands. First,
FramerD is intended as an infrastructure capable of
supporting and sharing a range of knowledge bases
developed by different researchers at different sites.
This goal demands some mechanism for separating
name spaces, to allow independent development while
still allowing references across name spaces. One
approach would be to use a simple package system,
such as CommonLISP’s,10 with a registry for package
names. The problem with this approach is that it then
becomes necessary to do a pair of string lookups in
order to resolve an object reference. With simple 64-
bit identifiers, references can usually be resolved by a
few array references rather than a pair of string look-
ups. While this is only a constant-time improvement,
it is an important one, since the semantic networks are
mostly objects containing object references.

A second demand is thatgensyming, the creation of
new object identifiers, needs to be efficient. For
instance, our text-processing system generates a node
for every phrase of the text it is processing, and some
representation schemes require a node for every slot
value generated. When programs are generating rep-
resentations, as opposed to simply using them, such
generation must be fast. A standard approach to gen-
syming is the use of a simple counter to generate
object names with a numeric component, but when
this is done, it is still necessary to make sure that the
generated name does not collide with any existing
object.21 This assurance requires a search to confirm
that the gensym is unique. In contrast, with numeric
identifiers a counter can be used directly as part of the
object name, ensuring uniqueness. A simple way to

think about the object database is as a flat 64-bit
address space whose locations contain arbitrary Dtype
representations. Object identifiers make it possible to
transmit and sharereferences to objects without hav-
ing to send or necessarily share the objects them-
selves. This is important for the kind of richly
interconnected structures involved in content under-
standing. For instance, in most semantic networks,
there is some path between any pair of nodes: if we
loaded a node whenever it was referenced, it would be
necessary to load the entire network whenever we
loaded a single node. An object system thus needs to
provide:

1. Lazy reference (an object can be referred to with-
out being present)

2. Distributed interoperable data access (to files and
across networks)

3. Lazy storage (an object will not be updated unless
it has changed)

4. Access control (for security and revision control)
5. Data integrity (in the distributed environment)

FramerD currently provides functions (1) through (3)
to our satisfaction. It currently provides (4) by a sim-
ple locking mechanism for files of objects or individ-
ual objects located on a server. An area of current
development, (5) is partially resolved by exclusive
locking and partially by the use of journalling to
ensure server integrity.

Varieties of lazy reference. When we make a distinc-
tion between a reference to an object and the object
itself, we need to also make a distinction between the
operations we are supporting on references and the
operations that require an actual object.

For instance, a minimal operation on references
would be the ability to pass references as arguments
and return them as values without relying on access to
the actual argument. There is not much value in hav-
ing a distinction between references and objects with-
out this minimal assumption. However, beyond this
point, choices must be made.

For instance, is fast identity comparison supported for
object references? If it is, we must keep a table of
object references and look up new references in the
table to ensure that the same reference will turn into
the same object pointer. If fast identity comparison is
not supported, we must go through some calculation
(probably less than loading the whole object) to deter-
mine reference identity. Another reason for maintain-
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ing reference identity is space allocation: if we ensure
that all pointers to the same object are associated with
a single memory address, we are ensured that each
object will take a constant space.

Maintaining object identity introduces the object ref-
erence as a subclass of objects in general: object refer-
ences are objects whose full description is not in
memory. They are “virtual objects” in the same sense
that blocks of memory swapped to disk are “virtual
memory.”

If we are maintaining object identity, we have the
question of whether there are any other operations
(besides simple comparison) that we want to support
on object references. In FramerD, we provide two:
marking and tagging. Marking consists of associating
object references with a small number of global sets;
the membership of an object in a set is determined by
a bit field associated with each reference. (See Figure
5.) These sets are explicitly allocated and deallocated
and are local to the process manipulating the refer-
ence.

Tagging is like marking in that it provides an ephem-
eral annotation for object references. While marking
involves bit fields, the tag is a pointer to some data-
level object (possibly another object reference). Tag-
ging provides a reusable mapping, from objects to
values, that is independent of the object’s structure
and does not require that the object itself be loaded.

In FramerD, we implement three levels of object
“presence”:22

1. A stub object consists of the object identifier and a
bit field.

2. A half object consists of the object identifer, a bit
field, a tag field, and fields for supporting the
retrieval of the object’s actual data-level value.

3. A full object is a half object whose structure has
been loaded (either from disk or the network).

This three-level division was arrived at based on expe-
riences with the earlier Framer implementation. There
is a basic trade-off between more levels of presence
and more steps and structure for object access. We

Figure 5 Object marks and tags: Morphology
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examined how the performance and memory require-
ments of applications changed with different models
of object presence. We found that fast set operations
were important enough to merit some basic marking
capability on all object references; other algorithms
required object tagging, so we implemented that as a
second level; and finally, the value of the object refer-
ence is loaded only when that value is needed for
some operation.

What is it good for? We can see the value in this
multilevel data representation by considering the fol-
lowing algorithm for maintaining a flat index of
objects. We assume a function,keys(X), that maps
from an object X to a set of key features associated
with X, and an inverse function,coindices(k), from
key features to the objects possessing them.

This algorithm implements a variant of the vector-
space retrieval model,23 where objects are considered
only if they have exactly two keys in common, and
each coincidence of keys is weighted by the inverse
frequency of the key in the corpus. By using marks
and tags, this algorithm computes this function with
much less memory than would otherwise be required.

The core of the algorithm in pseudocode is:

To find objects similar to object Q:
Let A be a marked set of objects, initially empty
Let score(x) be a tag on object x
Let N be the maximum value of |coindicies(k)|
For all the keys k in keys(Q)

for each e in coindices(k)
if (score(e)) is defined

set score(e) = score(e) + N/|coindex(k)|
otherwise if e is in A,

set score(e) = N/|coindex(k)|
otherwise place e in A

return the scored objects sorted by their score

The total number of references accessed by this pro-
cedure is

If it were necessary to load each of these objects,
retrieval would be quite expensive. For instance, in
our current 10-million-word text database, the total
number of distinct references accessed for a simple
query is in the hundreds of thousands; loading an
object can take anywhere from milliseconds on up,
depending on the latency and bandwidth of the disk or

network. Such comprehensive algorithms are think-
able only with the ability to mark and manipulate
objectswithout loading them.

Distributing storage. As mentioned earlier, FramerD
divides its address space into disjoint chunks called
pools; pools are used to manage the storage of indi-
vidual objects. Each pool has aprovider, which is
either a disk file or a network server. The pool for an
object can be found inlog N time (where N is the total
number of pools).

For a variety of reasons, the current implementation
limits pool sizes to integral powers of two and forbids
pools to cross 32-bit boundaries. This simplifies the
process of locating the pool for a particular object
identifier.

Pools are also used to organize access and concur-
rency control. Access control means managing the
relationship of clients to pools and the operations they
are permitted to perform on both the pool and the
objects it contains. Concurrency control means man-
aging conflicts between requests.

A simple, portable, file-locking mechanism is used to
control modifications to file pools. Different processes
can easily share read access to the same file, but only
a single process can modify the objects stored in the
file. Because individual processes cache object values
(gaining a significant performance enhancement), this
locking mechanism provides no guarantee of read/
write consistency. However, it does guarantee that
changes to objects in file pools will not be lost by dif-
ferent processes overwriting the same object. When
files are not being shared, the file-locking mechanism
is usually transparent to users, since modifications of
objects automatically lock the corresponding file pool.
Only when a program terminates abnormally without
clearing its locks, or when files are actually shared,
does the locking system for file pools become visible.

File pools can also be declared read-only by the local
protection facilities of the file system, in which case
the protections on the file extend to the objects stored
in that file.

Networked pools operate differently, supporting lock-
ing at the level of individual objects. Whenever an
object provided by a remote server is about to be
modified, a lock request is issued to the server,
together with an identification for the current process.
If the lock request succeeds, the server returns the

coindices k( )
k keys Q( )∈

∪
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object’s current value and notes internally that the
object is locked. When the object is saved (either
explicitly or when the session ends normally), this
lock is freed through a request validated by the pro-

cess identification. In addition to this normal freeing
mechanism, a lock can be forcibly removed, though
this may lead to inconsistencies. The server does not
allow two processes to share a lock on the same
object; one must relinquish the lock before another
can claim it. The automatic update of the current
value when an object is locked guarantees that
changes will not be lost due to caching of outdated
values.

While most servers support the locking scheme
above, servers can also beread-only or chaotic (unad-
visedly providing write access without locking). A
read-only server with an extended repertoire of com-
mands can provide carefully limited access to a pool
of objects. For instance, in our text-understanding
work, one server provides a “rhizome” database con-
sisting of unique entries for English words and their
possible meanings. The rhizome server is read-only,
but it also provides specialized commands for creating
new word entries. This approach keeps the database
from generating inconsistencies or redundancies but
still allows remote clients to extend the database as
needed.

FramerD does not provide any more fine-grained con-
currency control, such as the transaction-based mech-
anisms used in conventional databases. This sort of
mechanism is difficult to implement in FramerD for a
variety of reasons. First, lazy reference makes heavy
use of caching, which makes operations on an object,
once it is loaded, local and fast. Requiring that actions
go through a central arbiter would confound this fea-
ture. The integration of inference into the database
also complicates the definition of an “atomic” transac-

tion. In noninferential schemes, it is easy to tell
whether two changes conflict: they disagree on an
assignment to some logical location. However, in
inferential schemes, recognizing a conflict may
involve an arbitrary amount of computation. Finally,
FramerD is likely to be used in contexts with intermit-
tent connectivity, where we cannot (for instance),
assume transaction commitment within any particular
window. Though there may be transaction schemes
that address all of these problems, we do not have
one. However, fine-grained transaction control is pri-
marily important in the presence of critical conserved
quantities (like account balances); for other kinds of
data, FramerD’s locking and sharing of databases may
suffice.

Data integrity. The locking scheme just described
ensures that different client programs will not inad-
vertently erase each other’s changes. However,
changes might be lost in other ways. In particular,

1. A client program may terminate abnormally before
writing its changes to a file or server.

2. A server may terminate abnormally (possibly
because of a client request) before changes have
been committed to the disk files or to other servers
that it references.

3. A client or its server may terminate while changes
are being transmitted from one to the other.

FramerD addresses these issues as follows:

Issue (1) is a problem when the client has locally
cached data that have been changed. However, we
argue that the integrity of these data is the client’s
problem and that it may, in fact, be better that the
incomplete state of the client program be lost. The cli-
ent may choose to checkpoint itself in some fashion,
but that is not the responsibility of FramerD. The
remaining problem here is the interaction of crashed
clients and the locking mechanism. When a client ter-
minates in an untimely fashion, its outstanding locks
may not be cleared. Several functions exist for clean-
ing up after such terminations, but further develop-
ment is warranted to make such occasions infrequent.

Issue (2) is a serious problem, since a client can have
sent all of its changes to the server, but if the server
crashes without saving those changes, they will be
lost without the client’s knowledge. To address this,
we introduce the notion of journal servers. A journal
server saves every transaction to a file and periodi-
cally (based on both real time and number of transac-

Fine-grained transaction control
is primarily important

in the presence of
critical conserved quantities.
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tions) reconciles its state on disk with the saved
transactions. When a journal server starts up, it checks
for transactions in the journal file, indicating an unex-
pected termination. At this point it reprocesses saved
transactions in order to bring the database up to date,
saves its state, and clears the journal file. To provide
useful debugging information, the journal server
writes out requests before they are processed and
replies after they are processed. While reprocessing
the requests in the journal file, the server is able to
report the transaction during which the unexpected
termination occurred. Furthermore, it compares the
past results of transactions with new results to ensure
that the current state is consistent with that reported to
clients.

Issue (3) is especially tricky and currently is not
addressed. The likely solution will be to allow bun-
dled transactions, where a series of changes are sent
together to a server, and if a response is received, all
of the changes will have been recorded.

FramerD: The tools level

FramerD implements a frame-based “representation
language language” (RLL) derived from those
described by Greiner24 and Haase,25 which are in turn
derived from frame languages developed by Stefik6

and Goldstein.5 Following Stefik, we refer to “frame
objects” as “units” whose “slots” contain “values.”
Other implementations have referred to “slots” as
properties or attributes, but we choose “slots” to
emphasize their implementational, rather than episte-
mological, character. Slots are used in implementing
properties, attributes, relations, etc.

In previous representation languages and representa-
tion language languages, objects were uniquely asso-
ciated with symbolic names and slots were also
uniquely identified by such names. This reflected an
underlying implementation that usedLISP symbols
and their “property lists” to associate units with val-
ues. Among representation language languages, this
convention was used to define the properties and
implementation of particular slots using the unit with
the corresponding name: the unit “Color” defined the
restrictions, inferences, and presentational informa-
tion for the “Color” slot.

The association of a particular symbol with an object
was useful in providing a human handle on a system’s
objects. However, for the reasons of namespace colli-
sion and fast gensyming already described, FramerD

adopts numeric identifiers but provides a second layer
for indexing symbolic names to objects.

Units in FramerD are objects (with 64-bit identifiers)
whose values are “feature vectors” mapping “feature
names” to values. The feature names are either sym-
bols or object references. When the feature name is an
object reference, accesses to the attribute are mediated
by the corresponding object. This mediation can
include the automatic generation of values for a slot,
the execution of side-effects when the slot’s value is
changed, specialized tests for membership in a slot, or
specialized display of values.

Basic operations. The basic operations on units and
slots are:

1. Getting the values for a slot
2. Testing whether or not the slot includes a value
3. Adding an object to the values for a slot
4. Removing an object from the values for a slot

The default behaviors for (1), (3), and (4) simply
access the value associated with the slot in the feature
vector. The default behavior of (2) uses the behavior
of (1) (it gets the values and then checks for member-
ship).

When the slot is itself an object, the default behaviors
are modified by “demons” associated with the slot
description. These demons are expressions in a script-
ing language stored in simple symbolic slots named
(respectively) get-methods, test-methods, add-
demons, andremove-demons. When a value is gotten,
tested for, added, or removed, the corresponding
demons are executed. The expressions are in a
restricted subset of Scheme with no provision for pro-
cedure definition. These expressions can be easily
transformed into or generated fromALGOL-style
expressions, but no such interface currently exists.

Behavior-modifying expressions are evaluated in an
environment where variables relating to the ongoing
operation are bound:unit, slot, anddata are bound to
the unit and slot being operated upon and the value
directly associated with the slot in the feature vector.
For testing and modifying operations (e.g., (2)
through (4) above), the variablevalue is bound to the
particular value being tested for, added, or removed.

For example, the following objects implement the
slot’s advisor and advisees as inverses, using add and
remove demons appropriately:26
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The object @Advisor
Obj-name: “Advisor”
Add-demons:

(add value @Advisees unit)
Remove-demons:

(remove value @Advisees unit)
The object @Advisees

Obj-name: “Advisees”
Add-demons:

(add value @Advisor unit)
Remove-demons:

(remove value @Advisor unit)

The extension language provides conditionals and
local binding as well as a number of special represen-
tation operators. It is easily extended by procedures in
the native environment (LISP, Scheme, or C) and
expressions containing undefined symbols or proce-
dures (in the current environment) are simply ignored
(possibly with an error).

Stack tracking. One problem with demon execution
is the unbounded recursion that results when one
demon invokes another, which then reinvokes the first
demon. We handle this by the novel approach of
dynamically tracking active slot operations and trans-
forming recursive repetitions of the same operation
into null operations. Thus, if we assert

<@Ken @Advisor @Marvin>,

that in turn asserts the inference

<@Marvin @Advisees @Ken>,

which then asserts

<@Ken @Advisor @Marvin>,

but since that operation is already active, it does noth-
ing. This same principle, applied to getting the value
of slots, allows the specification of recursively defined
methods that may be quite efficient. For instance, the
following three definitions implement length, width,
and area slots:

@Length
Obj-name: “Length”
get-methods:

data
(/ (get unit @Area)

(get unit @Width))
@Width

Obj-name: “Width”

get-methods:
data
(/ (get unit @Area)

(get unit @Length))
@Area

Obj-name: “Area”
get-methods:

data
(* (get unit @Length)

(get unit @Width))

Even though the slots’ methods refer to one another
recursively, a calculation path fails whenever it
requires a recursive reference. Note also that one of
the methods simply involves accessing the data asso-
ciated with the slot (through the variabledata). These
slots can be seen to operate in the following cases,
where the nonitalicized values were given and the ital-
icized values were computed automatically.

@Rectangle1
Obj-name: “Rectangle1”
@Area: 100
@Length: 10
@Width: 10

@Rectangle2
Obj-name: “Rectangle2”
@Area: 35
@Length: 7
@Width: 5

@Rectangle3
Obj-name: “Rectangle3”
@Area: 242
@Length: 11
@Width: 22

When a slot description has multiple methods, they
are combined disjunctively: the results of all of a
slot’s “get-methods” are combined with one another,
and testing for a particular value returns true if any of
the slot description’s “test-methods” returns true.

An extremely simple form of inheritance is imple-
mented by theworks-like slot of slot descriptions. If a
slot description has no specialized methods for a par-
ticular operation but it does have aworks-like slot, the
value of this slot (which should be another slot
description) is checked for its own specialized meth-
ods, which are then used for the operation.

The inference capability of the systems are at what
Lenat and Guha27 call the “heuristic level”; they con-
sist of procedures that operate on data structures
directly. The particular modes of inference depend on
the basic functions provided.
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Nondeterminism. Another novel and important fea-
ture of the extension language is its use of “nondeter-
minism” in evaluation. Procedures operating on
“result sets” automatically iterate over the elements of
the set. Result sets are either stored in values explic-
itly, generated by user procedures of various sorts, or
explicitly introduced by the procedureeither. The
implicit iteration means that an expression like:

(get (get unit (either ‘father ‘mother)) (either ‘brothers
‘sisters))

returns the aunts and uncles of the person described
by “unit” without having to explicitly express the iter-
ations or worry about the singularity or multiplicity of
slots such as “mother” or “brothers.” The scripting
language also provides set operations (union, intersec-
tion, and difference) applicable to result sets that use
the marker bits described earlier to achieve linear-
time performance over sets of objects.

The use of nondeterministic results adds an interest-
ing twist to the kinds of interdependent slot defini-
tions just demonstrated. If a description is
inconsistent, the values of the slots contain result sets
corresponding to the possible consistent values for
each slot, given the other slot values:

@Funny_Rectangle
Obj-name: “Funny Rectangle”
Area: 100 125
@Length: 25 20
@Width: 5 5

Again, nonitalicized entries are given and italicized
entries are derived. This is not, of course, a full-
fledged constraint reasoning system, since there is no
identification of which combinations of these six val-
ues are actually valid. Nonetheless, the very presence
of multiple values identifies an inconsistency that the
removal of a given value will repair.

Inference. An inference is the appearance of structure
in the database that was not originally literally
described. In a classic example, if the system knows
someone’s parent and that parent’s parent, it can
determine that a grandparent relation exists, even
though no such relation was literally given. Inferences
like these can be done either “eagerly” or “lazily”:
eager inferences happen as soon as their preconditions
are asserted; lazy inferences happen only when the
inferred fact is requested by the user. Practically, lazy
inferences are implemented by the get and test meth-
ods and eager inferences by the add and remove
demons.

For instance, suppose we want to implement slots for
mother, father, and parents (their union). An eager
way to implement these slots would be to have mother
and father be slots with demons that add values to or
remove values from the parents slot:

@Parents
Obj-name: “Parents”

@Mother
Obj-name: “Mother”
add-demons:

(add unit @Parents value)
remove-demons:

(remove unit @Parents value)
@Father

Obj-name: “Father”
add-demons:

(add unit @Parents value)
remove-demons:

(remove unit @Parents value)

Whenever we asserted that X is Y’s mother, the “add
demons” for the mother slot would assert that X is
also Y’s parent. If we subsequently removed X from
Y’s “mother” slot, we would likewise remove X from
Y’s parents slot.

A lazy way to implement these slots would be to have
mother and father have no demons associated with
them, but to have the “methods” slot of parents com-
bine the mother and father slots:

@Parents
Obj-name: “Parents”
get-methods:

(get unit @Mother)
(get unit @Father)

@Mother
Obj-name: “Mother”

@Father
Obj-name: “Father”

In this case, the parents slot would be generated only
when needed, rather than always being updated when-
ever the mother or father changes.

One problem with eager inference istruth mainte-
nance; if two different inference paths lead to the
same conclusion, we must be certain that invalidating
one does not invalidate the other. The standard solu-
tion in FramerD is to store one value on a slot for each
justification (each separate invocation of add by users
or demons) and to remove one value for each justifica-
tion. This approach, while it usually works, manifests
some annoying problems when a user removes an
inferred value without removing its antecedent.
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For instance, suppose we assert that Hera is Posei-
don’s mother, which leads to the assertion that Hera is
also Poseidon’s parent. We then step in and retract the
derived parent relation without retracting the original
motherhood relation. Time passes and we learn, in
classic soap opera style, that Hera used to be a man
and was actually Poseidon’s father. This asserts the
parent relation all over again, but when we subse-
quently retract the motherhood relationship, it errone-
ously retracts the parent relation derived from
fatherhood. A full solution to this would involve keep-
ing track of why each value is present, but this would
involve substantial overhead that we currently choose
to avoid.

Because of this problem and the overhead of eagerly
making structural inferences, lazy inference is usually
preferable. However, in some cases, eager inferences
are necessary for reasons of efficiency and complete-
ness. For instance, inverse slots (children and parents,
husband and wife, left and right) are best imple-
mented eagerly because computing them “after the
fact” requires iteration over very large sets (e.g., find-
ing X’s husband might involve searching all people to
find one whose “wife” slot is X).

FramerD provides a handful of functions to simplify
the writing of methods and demons. First, the func-
tions get, test, add, andremove implement the basic
operations listed above. The functionpathp searches
for a path between two objects through a particular
slot (or set of slots). The functioneither, described
earlier, introduces a set, and the functionsunion, inter-
section, and difference combine sets in straightfor-
ward ways (actuallyunion andeither are identical).

Indexing. As mentioned earlier, FramerD provides an
alternative method for mapping object names to
objects. This indexing facility is quite general, allow-
ing any data-level object to be mapped to a number of
other data-level objects (including object identifiers).
The facility is designed to make adding a new map-
ping for an existing key very efficient. This makes the
facility good for maintaining large inverted indices.
The approach uses hash tables and combines
(optional) in-memory caching with data stored on
disk, allowing indices to be incrementally modified
but quickly accessed. It also allows large tables to be
used without a corresponding large “footprint” in
memory.

The indexing facility can be used for caching values
of complicated procedures or for guaranteeing a cor-

respondence between externally unique lexical identi-
fiers and internally unique object identifiers. For
instance, in a prototype intelligent electronic-mail
system, the indexing facility is used to maintain a map
to the descriptions of qualified addresses and message
identifiers.

This general facility is also used to implement aframe
indexing system that indexes frames by slot values. It
ranks frames by similarity, based on overlapping slot
values, and has been used quite effectively with our 7-
million-frame database. An active area of current
research is a comparative evaluation of different
methods for computing similarity based on overlap-
ping slot values. We have found that the conventional
approaches of information retrieval (for instance,
weighting by inverse frequencies) are not optimal for
object indexing, since quite common slot values may
still be important distinguishing characteristics for
objects. Given this, we are exploring formal models
for object indexing and their possible implementa-
tions.

Performance

Evaluation of FramerD’s performance is difficult
without some precise characterization of the tasks to
which it is being applied, and there is, as yet, no stan-
dard set of benchmark tasks for large knowledge
bases. To make a preliminary evaluation, we imple-
mented a simple benchmark in C, intended to be char-
acteristic of the operations usually performed over
semantic networks. We then monitored the program’s
performance over a series of random trials, tracking
time expended, objects loaded, and objects referenced
(to measure the effect of object caching).

The benchmark operation,count-common, operates
on a hierarchical ontology and counts the number of
parent nodes in common to two children. As with
many operations over semantic networks, this opera-
tion requires many links to be followed, but it also
includes repeated references to nodes higher in the
hierarchy, making caching especially advantageous.
We also use the marker bits attached to objects to
speed up the algorithm. In future work, we will imple-
ment program variants that do not use either caching
or marker bits, in order to assess how efficacious the
corresponding performance improvements really are,
though some conclusions can be drawn from the
benchmark performance itself.

The ontology used is derived from WordNet28 and
consists of 214 317 nodes, comprised of 122 584
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nodes representing individual words and collocations
(e.g., “fly” or “fly fishing”) and 91 733 nodes repre-
sentingsynsets: sets of synonyms that can be used
interchangeably in particular contexts and thus repre-
sent possible word meanings. The relations in Word-
Net are both represented separately and conflated into
a single hierarchical relation used for the benchmark.
These objects are relatively small, averaging about six
slots with an average of eight values each.

Two hundred fifty consecutive trials were run on pairs
of objects chosen at random. The benchmark was run
on a 90-megahertz Pentium** processor under
Microsoft Windows** NT with 64 megabytes of

memory, and compiled with Microsoft’s Visual C/
C++**. We ran the benchmarks using both a database
stored on the local disk as a file pool and a database
served by a remote server (an Alpha** 3000/500 pro-
cessor). The server was restarted before the bench-
mark to avoid any server-side caching effects. For
each trial, we divided the real time taken for the trial
by the number of objects referenced or loaded. In Fig-
ure 6, these are plotted against each individual trial.
The random seed used to select random objects was
set to be the same for the network and local disk trials.

In Figure 7, we see the frame reference times for
FramerD with local disk access. The average refer-

Figure 6 Seconds per frame reference over 250 trials

Figure 7 Seconds per frame loaded over 250 trials
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ence time over the entire run was 0.0025 seconds. We
would expect to see the performance on references
increase over time due to caching, but it turns out that
loads are so fast that the advantage of caching over a
run this small (a few hundred objects) is not substan-
tial. The average time was 0.0048 seconds per loaded
frame.

The networked database had identical performance
numbers, 0.0025 seconds per frame referenced and
0.0048 per frame loaded. The similarity of this aver-
age case performance and the simultaneous appear-
ance of two spikes in the timing data suggests that our
timing may be compromised by both the task itself
and the precision of the timing function under Win-
dows NT. Nonetheless, this performance is satisfac-
tory for our current applications.

While there is little performance data on large-scale
knowledge bases with which to draw a comparison, a
recent paper on one approach29 describes a hybrid
database management/frame system that averaged
roughly 0.1 seconds per loaded frame, substantially
slower than FramerD. However, such comparisons are
mostly of practical rather than theoretical signifi-
cance, since the experimental platforms were substan-
tially different (compiledLISP on aSPARCstation** 10
vs C on a Pentium/90 processor).

Summary

FramerD provides a simple but robust representation
for knowledge and databases comprised of millions of
objects. Novel elements of its design include:

• A portable binary object format supporting net-
worked computation and multimedia data types

• The separation of naming (maintaining uniqueness)
from indexing (determining identity)

• Multiple access libraries allowing programs inLISP,
Scheme, C, or C++ to share data and representation

• The division of object storage across multiple files
and servers

• The introduction of nondeterminism (theeither
operator) to simplify slot operations

• An embedded representation language language
supporting nonsymbolic slots

We are releasing FramerD to the public to encourage
its adoption as a standard for large representational
databases. Future work will include the deeper inte-
gration of multimedia types and the implementation
of generic browsing and manipulation systems.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sunsoft, Inc., Digital
Equipment Corporation, Intel Corporation, Microsoft Corporation,
or Sun Microsystems, Inc.
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