US007966311B2

a2 United States Patent 10) Patent No.: US 7,966,311 B2
Haase (45) Date of Patent: Jun. 21, 2011
(54) SYSTEMS AND METHODS FOR 2,832,82 51; : ggggg %’Ie_:liserl}i etal. .o, ;8471;2
A A alk etal.
PROCESSING QUERIES 6,167,370 A 12/2000 Tsourikov et al ... 704/9
6,263,335 Bl 7/2001 Paiketal. 707/5
(76) Inventor: Kenneth Haase, Dorchester, MA (US) 6,272,501 Bl 8/2001 leursasn 707/104
6,298,342 B1* 10/2001 Graefeetal. 707/4
(*) Notice: Subject to any disclaimer, the term of this g,g‘l‘é%gé g} : éggg% é’lacll\lf_icol et fl . ;8;;2
: : s s etchius et al. ...
patent is extended or adjusted under 35 6.523.001 Bl 22003 Chase ... " 04/10
U.S.C. 154(b) by 769 days. 6,542,889 Bl 4/2003 Aggarwal etal. ..oo.oocococon 707/5
6,615,253 Bl 9/2003 Bowman-Amuah ... 709/219
(21) Appl. No.: 10/463,555 6,675,159 Bl 1/2004 Linetal. 707/3
6,826,557 B1* 11/2004 Carter et al. .. 707/2
Ted- 6,829,605 B2 12/2004 Azzam 707/5
(22) Filed: Jun. 17,2003 6.901.399 Bl 52005 Corston et al. . . 707/6
. . e 6,906,719 B2 6/2005 Chadhaetal. 345/473
(65) Prior Publication Data 6,931,395 B2* 82005 Day etal. ..o 707/3
US 2005/0044064 A1 Feb. 24, 2005 (Continued)
Related U.S. Application Data OTHER PUBLICATIONS
(60) Provisional application No. 60/389,196, filed on Jun. Notification of Transmittal of the International Search Report or the
17, 2002. Declaration, mailed Sep. 18, 2003.
(51) Int.CI (Continued)
GOGF 7/00 (2006.01) Primary Examiner — Kimberly Lovel
GO6F 17/30 (2006.01) 74) Attorney, Agent, or Firm — Mintz, Levin, Cohn, Ferris,
€y, A8
(52) US.ClL oot 707/713 Glovsky and Popeo, P.C.
(58) Field of Classification Search 707/1-206,
707/3, 713, 999.003 (57) ABSTRACT
See application file for complete search history. The present invention relates to systems and methods for
(56) References Cited processing queries. One embodiment of the invention pro-

U.S. PATENT DOCUMENTS

vides a system for executing complex procedural queries
across a plurality of databases. The system includes: a query
processor capable of partial execution of procedural queries;

2’247‘2’;47;(5) ﬁ * 15;}33? g[lf;};fr;on etal e '3'9;927(;;‘ a set of database adaptors capable of optimizing or and refer-
56758190 A 10/1997 Schuetze ... " 395/760 ring collections of queries to external databases; and a query
5,701,461 A 12/1997 Dalaletal. ... 395/604 cache component in communication with the query processor
701, h p t t th the query p
5,867,686 A 2; 1999 Conﬁler et all. 3/95/495 and the set of database adaptors. The query cache component
5,870,559 A 2/1999 Leshemetal. 395/200.54 g
8 /M stores the results of external database queries in a query cache
g’ggg’g% ﬁ lgﬁggg Eirg:ii;tgl ?rder otal ;8;;2 and notes when a query has not been stored and records the
5,970,490 A * 10/1999 Morgenstern 707/10 same query.
6,055,547 A 4/2000 Cooperetal. 707/204
6,073,129 A * 6/2000 Levineetal.cceoon... 707/4 20 Claims, 5 Drawing Sheets
Functional Query Language
(get (find (procl ..) (get . . .) . ..) sample) Database External
] Adaptors Databases
!
Memory
Query (procedures, objects, [5 1122
Rewrite [' | methods, etc) - 114a
II — s L— 110
112b
102 104 g 5 — @,\/ 114p
ue:
Query Query . %
Buffer Execution 9 e
. &
Unit 7| — [5 114
Soft Failure Signal _|“6 ~ 1124 @\/
L g — 1144
Query Proces\s_o_rl - g;gm m

Application

111

US 7,966,311 B2
Page 2

U.S. PATENT DOCUMENTS

7,027,974 Bl 4/2006 Buschetal.cccccoevenne. 704/4
7,085,711 B2 8/2006 Kadambe 704/201
7,103,590 B1* 9/2006 Murthy etal. ..o 707/3
7,120,574 B2 10/2006 Troyanovaetal. 704/9
7,171,351 B2 1/2007 Zhou 704/9

2003/0014393 Al* 1/2003 Kabra et al. .. 707/3
2003/0065874 Al* 4/2003 Marron et al. . 711/100
2003/0212660 Al* 11/2003 Kerwin 707/1
2004/0073549 Al* 4/2004 Turkeletal. ... 707/5

OTHER PUBLICATIONS

Baeza-Yates, et al., “Modern Information Retrieval”, published by
Addison Wesley, 1999, pp. ix-xvi; 99-116 (Chapter 4); 191-228
(Chapter 8).

Brill, E., “Transformation-Based Error-Driven Learning and Natural
Language Processing: A Case Study in Part of Speech Tagging”,
Computational Linguistics, 21(4):1-37 (1995).

Church, K.W., “On Memory Limitations in Natural Language Pro-
cessing”, published in MIT Laboratory of Computer Science Tech-
nical Report MIT/LCS/TR, 245:1-162 (1980).

Cutting et al., “A Practical Part-of-Speech Tagger”, published in
Proc. 3 ANLP, Trento, Italy, pp. 133-140 (1992).

Grefenstette, G.T., “Automatic Thesaurus Discovery via Selective
Natural Language Processing: A Corpus based Approach”, Univer-
sity of Pittsburgh, pp. 1-331 (1993).

Haase, K., “Interlingual BRICO”, IBM Systems J.,39(3&4):589-596
(2000).

Turtle, et al., “Evaluation of an Inference Network-Based Retrieval
Model”, ACM Transactions on Information Systems, 9(3):187-222
(1991).

* cited by examiner

US 7,966,311 B2

Sheet 1 of 5

7ip afp ap ap

Jun. 21, 2011

U.S. Patent

Pril

PCIl

W1l

aril

k41!

> <] -
qir ~
orr —

soseqeIR(q
[euIaIXy

mM: %_ -

sioydepy
aseqeie(q

AJOWAN

i Awnd

[311
N —
uvoneonddy
Sunsonbay]
uonedwo)y oot

e " kond, J0SS3204d Auand
“ o m
! ™\ [eu3§ amqreq Jos !
m | _| y m
Q " g _
< | nan i
S “ npng | |
S “ uonndaxy * “
« _ . K1and | i
2 | L1and) !
Q ! wr — “
= Y0l = “
o ! i
m 0L — m---------- T m

m (010 ‘spoyiowr 301 l\.“ SJLIMIY !

m ‘s3090[qo ‘saanpaocoid) _ i

(ordwes (* = = (° ° * 388) (*° tooud) putys) 198)

o3en3ueT A1onf) [eUOIOUN]

US 7,966,311 B2

Sheet 2 of 5

Jun. 21, 2011

U.S. Patent

T S

(és3u
aded-AdelTTTw (YITws 30(C,, SIUBPU3ISIP-333) JOIDITOS)

US 7,966,311 B2

Sheet 3 of 5

Jun. 21, 2011

U.S. Patent

¢ 81

((22TAuDS AdelTTTw, °e3TA, (Ssjusaded, x 398) 31s93)
(X ésjuoued - AJelT[Tw) SUTFSPp)
((((usJpTITy> X 398) sjuepusdssp-3193)
(UuSJpTTy> X 398) 91OTOYD)
poJoTdx® °9dJe suoTido yioq eyl S°31edIpUT JDIOHD ¢
(X sjuepus>dsop-398) SUTFIp)

US 7,966,311 B2

Sheet 4 of 5

Jun. 21, 2011

U.S. Patent

¥ 31

(ua1p[yd X 1239)

/

((uazpyo X 3°8) sjuepu2dsap-123) (uIp[Iyo X 1035)

(((uaIpIyd X 1938) s1uRpudsap-123) (uaIpmyd x 123) 2010Yd)

——

(sjuored, x 198)

\

(. 201A308 ARy, 9RJIA, (Siuared, x 198) 1591)

isjusJed-AJelITTIW

cl -/

sjuepudsdsap-3198

oz —/

(. .1wis 20f,, SJUBpUddsSap-1a3)

(¢ syuared-Areyrua (WIS 20f,, SIUEPURISap-103) 10109]as)

US 7,966,311 B2

Sheet 5 of 5

Jun. 21, 2011

U.S. Patent

suonisod o1y 03
2ouaraya1 Surddew ‘sodory a1qe v
901A9p /] [BWI2)XD UE 0} WIS J[1 © 9B

G 8]

0¢cl

[qo=([1]sJo1¢ p10, Joyoeo— Axanb

()109lqo~pea -> [qo

J ut [[1]sjo1] sodariy 01 Jaas
[1] sJa1 yoea 104

sodoy1y £q sJol1 110G

148

aseqelep SIy) U1 10U
g $QOUAIJI (IO Aue
[1 SJo1 WOIJ 2AOWSY

9Tl

[1syex
A SOJUDIYOI
vel 10 Jo Avwre :nduy

US 7,966,311 B2

1
SYSTEMS AND METHODS FOR
PROCESSING QUERIES

CROSS REFERENCE TO RELATED
APPLICATION

This document claims priority to, and the benefit of the
filing date of, co-pending provisional application entitled
“Efficient Processing of Programmatic Queries through Iter-
ated Patent Evaluation,” assigned Ser. No. 60/389,196, filed
Jun. 17,2002, and which is hereby incorporated by reference
in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to the implementation of
database-driven applications. One challenge with such appli-
cations is to coordinate the logic of applications with the
structure and organization of external databases to which the
applications refer. Patterns of query and access that make
sense for a particular application may be inefficient when
translated directly into searches and retrievals made against
an external database. An opportunity for addressing this chal-
lenge lies in the fact that the database interface can hide the
actual implementation of complex requests, reorganizing
their implementation to better fit the structure of the database
and the costs of access.

The standard approach to this reorganization is to require
that queries be expressed in particular limited formal lan-
guages whose logical properties are well understood. Queries
in this language can then be manipulated to create logically
equivalent queries that are more efficient to apply against a
particular external database. The most widespread of such
approaches is to describe queries in terms of a relational
algebra, a mathematical formalism with certain core opera-
tions and combination methods. A particular query repre-
sented in terms of relational algebra can then be rewritten in
a way which is provably identical to the original query but
which can be executed more efficiently against a given data-
base or set of databases.

Much of the database management system industry has
standardized on an external query format, SQL (Structured
Query Language), which maps cleanly into relational alge-
bra, allowing query rewrites to provide efficient access to
external databases without forcing application writers to cus-
tomize their queries or operations any further than necessary
to express their data requirements as a series of SQL queries
and operations. In addition, this level of abstraction allows
database designers to optimize databases for different kinds
of access patterns (allowing even more efficient rewrites)
without the recoding or recompilation of applications.

In the past decade, new data models have emerged which
are object-oriented or object-relational. These systems typi-
cally work by either translating the object or hybrid models
into the same relational algebra used in conventional data-
bases or by augmenting the relational algebra in particular
ways. In general, these approaches use the same core method
of rewriting queries to better fit the structure of the external
database.

The rewriting approach has a number of deficits.

1. It requires that the query language be restricted enough to
allow rewritten queries to be provably equivalent to the
original query.

2. Effective rewriting tends to require articulating, in some
detail, the structure of the database itself; this may be
difficult if the database is (for example) a networked exter-
nal service provided by a third party.

15

20

25

40

45

60

65

2

3. It is difficult for the rewriting process to include aspects of
the practical semantics of the application and database,
which could produce substantial performance improve-
ments; such practical semantics are most commonly built
into the program logic of the application and so are outside
the normal scope of query rewriting.

4. Query rewriting is typically a static process (done when an
application is compiled or a query is first executed) and
does not reflect information gathered during the actual
execution of a query.

These deficits are now described further.

In order to produce provably equivalent rewrites (1), it is
necessary to restrict the query language to disallow expres-
sions that cannot be rewritten to yield provably identical
queries. For example, standard programmatic constructs such
as iterations and conditionals do not translate cleanly into
relational algebra and so SQL normally does not handle such
constructs directly. Instead, most SQL implementations
break complex queries into sub-queries connected by the
programmatic logic of iterations and conditionals, but the
general query cannot generally take advantage of optimiza-
tions among the sub-queries. For example, the following
pseudo-code fragment illustrates the problem in a very simple
form:

ages=query("SELECT id,ages FROM people WHERE course='CS3091">
avg_ age=sum(x)/size(x)

heights=query("SELECT id,height FROM people WHERE
course='CS3091">

avg_ height=sum(y)/size(y)

grades=query('SELECT id,grade FROM people WHERE
course='CS3091">

if correlate(ages,grades) > correlate(heights,grades): return 'age';

else return 'height';

It would probably be most efficient to combine the three
database calls in the fragment, but database interfaces would
generally be unable to do such a combination because the
calls are separated by program logic outside of the normal
scope of query optimization.

In order to rewrite queries as efficiently as possible (2), it is
important to know the search and storage characteristics of
the external database being accessed. For example, a given
complex query may express certain independent operations
in a particular order, but the order itself may not be logically
important. A rewrite may reorder the operations but the most
efficient reordering will most likely depend on the implemen-
tation of the underlying database and indexing store. An
indexing store stores various indices associated with a data-
base. When a third party provides a database, as is increas-
ingly the case with web services (for instance), these charac-
teristics may not be available.

Knowledge of practical semantics can dramatically
decrease search times (3) and these practical semantics are
generally unavailable to query rewriting. For example, a
search for the children of chairs under the age of 32 should be
resolved very quickly against almost any database, based on
the definition of practical semantics and common sense.
However, the use of such practical knowledge in optimizing
queries for standard database systems is generally difficult
because it can involve complex patterns of conditionals and
dependencies that do not map well into a uniform relational
algebra. For example, an external database can store metadata
about the domains and ranges of particular relationships.
Using this metadata, a code fragment such as the following:

US 7,966,311 B2

(define (smart-get frame rel)
(if (test frame 'isa (get rel 'domain)) (get frame rel)

(fail)))
(smart-get (find-objects 'isa chair 'age (lessthan 32)) 'children)

could use the metadata to optimize a query, but it would have
to do so by patterns of conditionals, which may not map easily
into a relational algebra. For example, given that the recorded
domain of ‘children’ is ‘people’, if none of the “young chairs”
are people (and it is unlikely that the young chairs are people)
a query processing system should be able to resolve this query
quickly relative to conventional database management sys-
tems using relational algebra to rewrite the query.

Finally, the static rewriting of queries rules out optimiza-
tions that are based on the particulars of a query or on infor-
mation that emerges during the query’s execution (4). For
instance, a query on a disjunction of values (for instance, the
integral years 1990, 1991, 1992, and 1993), that are not
known at query run time, could sometimes be converted into
a range (1990-1993) in the event that the structure and orga-
nization of the external database supports ranges, but this is
not possible if the query rewriting happens entirely at compile
time or initial query time, before the actual values are known.

SUMMARY OF THE INVENTION

The present invention relates to systems and methods for
dynamically optimizing database queries expressed in a gen-
eral purpose programming language and executing searches
and retrievals against a variety of databases whose storage
characteristics may be only partially available to the proces-
sor of the query. The use of a general purpose programming
language is intended to address deficits (1), (3), and (4)
described in the background section. The ability to query
against databases with little orno knowledge of their structure
addresses deficits (2) and (4) described in the background
section. These two characteristics are linked in the general
architecture of the invention.

In one embodiment, a system according to the invention
includes:

a. A query buffer for holding a particular query expression,
including multiple components or sub-queries (which
may themselves have sub-queries), for iterated partial
execution by a query execution unit.

b. An external memory for storing non-persistent program
data and procedures that can be routinely accessed in the
course of query execution.

¢. A query execution unit (QEU) in communication with
the query buffer and the external memory; the QEU
executes a query by executing its sub-queries and com-
bining their results in such a way that the incomplete
execution of one sub-query does not rule out the execu-
tion of other independent sub-queries.

d. A device in communication with the QEU; the device
signals and responds to soft failures, which may termi-
nate one sub-query of a query while allowing indepen-
dent sub-queries to proceed.

e. A “query cache” in communication with the QEU. The
query cache stores known query results for immediate
retrieval without recourse to external databases; in one
embodiment the query processing system routes all
external database accesses through the query cache. The
query cache returns known results if they are available or
returns a “‘soft failure” if they are not, while noting the
details of the query that was made (a soft failure is an

10

15

20

25

30

35

40

45

50

55

60

65

4

indication that not enough information is directly avail-
able, i.e., in the query cache, to execute a query or
sub-query) for subsequent execution by the database
adaptors; interactions between the QEU and the query
cache generally specifies basic operations and search or
access parameters, whose character is typically deter-
mined by the database adaptor which eventually
resolves the query.

f. A set of external database adaptors in communication
with the query cache. The database adaptors have pro-
visions for optimizing a set of independent queries
bundled together into a single package; these bundles of
queries come from the query cache after each re-execu-
tion cycle.

In one embodiment, a query processor includes components
(@) (b), (¢), and (d).

The query processor receives queries written using a query
language for expressing database and search operations
through a recursive combination of primitive operations; in
one embodiment this language is a subset of an existing
general purpose programming language.

An alternative embodiment of the system also includes:

g. A query rewriter for converting certain query language
constructs into a form that can be correctly executed by
the query execution unit (¢); in one embodiment the
query rewriter when included is part of the query pro-
Cessor.

The described invention may be implemented either in
hardware, in software, or in a combination of hardware and
software. Embodiments of the invention can use a general
purpose programming language or can be integrated in an
application programmed in such a language. The physical
memory for the various components may be part ofa common
physical memory shared between the components, e.g.,
where the invention is implemented in software.

Another embodiment of the invention provides a method
for repeatedly executing a query and its component sub-
queries. A sub-query may be made up of other sub-queries,
and each sub-query either returns a result or signals a soft
failure. In this embodiment, all of the sub-queries of a query
are typically executed even if one of the sub-queries signals a
soft failure.

Queries and sub-queries are either external (accessing an
external database) or internal (combining results of other
components). An external component may depend on the
results of other internal or external components. In one
embodiment of the invention, query execution has two fea-
tures:

The query processing system delays the actual execution of
external queries so that accesses to external databases
can be bundled together and optimized for more efficient
execution; most commonly, the query processing system
delays execution until the top level query finishes its
partial execution, in order to maximize the opportunities
for optimization.

The query processing system caches the results of external
queries so that re-execution of the program will not
redundantly re-execute external queries.

The notion of executing the same program over and over to
improve efficiency may seem counterintuitive, but it particu-
larly reflects the increasing disparity between modern proces-
sor and cache speeds and disk and network access and latency
times. As a consequence, the cost of repeated re-execution is
normally small compared to the advantages of being able to
bundle and sort accesses to external databases. However, this
tradeoff may be diminished if overall execution time is high

US 7,966,311 B2

S

compared to database access times. In such cases, some
accesses may be performed while the partial execution is still
ongoing.

BRIEF DESCRIPTION OF THE ILLUSTRATED
EMBODIMENT

FIG. 1is a schematic illustration of a system for processing
queries according to one embodiment of the invention.

FIG. 2 is an example query using a query language based
on Scheme.

FIG. 3 is a procedure definition for the query shown in FIG.
2.

FIG. 4 illustrates the application of a test predicate to a
result in the context of the example query of FIG. 2.

FIG. 5 illustrates a flow chart of one embodiment of the
database adaptor of FIG. 1.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to systems and methods for process-
ing queries. In one embodiment, the invention provides a
system for executing complex procedural queries across mul-
tiple databases. With reference to FIG. 1, the system includes:
a query processor 100 capable of partial execution of proce-
dural queries; a query cache 110 in communication with the
query processor 100; and a set of database adaptors 112a-
112d in communication with the query cache. The query
cache stores the results of external database queries, notes
when a query has not been stored, and records the same query.
The database adaptors 112a¢-1124d optimize or refer collec-
tions of queries to external databases 114a-114d, respec-
tively.

One embodiment of the query processor 100 includes:

a. a query buffer 102 for holding a particular query expres-
sion, including multiple components or sub-queries (which
may themselves have sub-queries), for iterated partial
execution by a query execution unit;

b. an external memory 106 for storing non-persistent program
data and procedures that can be routinely accessed in the
course of query execution;

c. a query execution unit (QEU) 104 in communication with
the query buffer 102 and the external memory 106; the
QEU 104 executes a query by executing its components
and combining their results in such a way that the incom-
plete execution of one sub-query does not rule out the
execution of other independent sub-queries;

d. a device 116 in communication with the QEU 104. The
device 116 signals and responds to soft failures, which may
terminate one sub-query of a query while allowing inde-
pendent sub-queries to proceed. In one embodiment if
query execution completes without any soft failures, the
device 116 signals a requesting application 111 that the
query execution is complete. In addition, the QEU for-
wards the results of the execution to the requesting appli-
cation 111; if query execution completes but a soft failure
occurred, the device 116 signals the query buffer to retrans-
mit the query to the QEU for execution.

The query processor 100 receives queries written using a
query language for expressing database and search operations
through a recursive combination of primitive operations; in
one embodiment this language is a subset of an existing
general-purpose programming language.

The query processor 100 optionally further includes a
query rewriter 108 in communication with the query buffer
102. The query rewriter 108 can receive a query and convert

15

20

25

40

45

60

65

6

certain query language constructs into a form that can be

correctly executed by the QEU 116.

A more detailed description of elements of embodiments
of the invention now follows. Note that one may implement
elements described above in software or hardware or a com-
bination of both.

The Query Language
In one embodiment, the query language is a subset of a

general-purpose functional programming language such as

Scheme. The use of a general-purpose language allows great

versatility in the specification of database operations and

combinations of database operations. The query language can
make use of user defined compound procedures and methods,
which abstract the execution of complex combinations of
sub-queries into single points of entry. For example, a query
can define an abstract procedure (such as ‘get-descendants’
described further below), which generates sub-queries of its
own, allowing the construction of new “query operators.”

Allowing the construction of query operators simplifies the

expression of complex queries. These user defined compound

procedures and methods may be either explicit procedure
calls or methods associated with an object-based program-

ming model. In order for the invention to function correctly, a

query in the query language should obey the following

restrictions:

1. it is functional in that repeated executions, providing the
underlying database has not changed, will yield the same
result;

2. it is repetitively innocuous in that repeated executions can
be safely done without sacrificing program or system
integrity; for example, repeated execution of the procedure
will not, of itself, allocate memory or disk resources with-
out explicitly or implicitly releasing them.

In addition, a query is subject to the constraint that:

3.itis, as much as possible, severable so that the overall query
can proceed in some manner even if parts of the query
(sub-queries) fail.

These restrictions apply recursively to the query as a whole
and its sub-parts, so that a query component or sub-query
should also be functional, repetitively innocuous, and maxi-
mally severable. Note that restriction (2) applies only to the
execution of the query itself and not to the operation of the
invention as a whole, which typically will allocate new
resources, especially in the query cache, over repeated itera-
tions (and fully or partially release the resources after the final
iteration).

A query that is externally side-effect free satisfies require-
ments (1) and (2). A query is externally side-eftect free when
the query does not alter variables, memory, or devices (real or
virtual) outside of the procedure. Either rewriting the query
(to, for instance, use local rather than global variables) or
modifying the associated compiler or interpreter to invisibly
insulate the executing procedure from external variables,
memory, or devices satisfies requirements (1) and (2).

Most modern programming languages, for instance C,
Java, or Ada contain subsets that are functional languages of
the sort useful for this invention. These subsets can be used
with this invention to optimize their access to external data-
bases. For example, the relevant subset of the C programming
language would exclude the assignment and increment/dec-
rement operators as well as certain /O operations

An example query using a query language based on
Scheme is listed in FIG. 2. The English form of the query
would be “Find all the descendants of Joe Smith whose par-
ents were in the military”. As specified in FIG. 2, this query
depends on the procedure definitions in FIG. 3. The code
fragment shown in FIG. 3 begins by defining a procedure ‘get

US 7,966,311 B2

7

descendants’ which recursively gathers the identified children
of an individual from the database. The code fragment also
defines a procedure ‘military-parents?’, which gathers the
parents of an individual when the parents have served in the
military. One substantial advantage of using a general-pur-
pose programming language for query expression is the abil-
ity to abstract complex query combinations into single pro-
cedures such as those listed in FIG. 3 and to use the full power
of'a functional programming language to construct such com-
binations.

This invention also applies readily to object oriented lan-
guages such as Java, Python, or Squeak, where a procedure is
not uniquely specified by name (such as ‘get-descendants’)
but is identified by the object and arguments of the procedure
call. For example, the query (‘get x children’) may invoke
different underlying procedures depending on the value of x.
The chief requirement is that the procedure executed, what-
ever it is, should obey the above constraints and particularly
that the overall query execution should obey restrictions (1)
and (2) while (ideally) maximizing constraint (3).

In addition, some query programs that do not satisfy the
above requirements can be automatically rewritten to satisty
them. This invention includes implementations that perform
such automatic rewrites to meet the above restrictions.

Finally, the query processor may make special arrange-
ments to ensure that the execution of a query satisfies the
above restrictions, even if the query’s normal interpretation
would not. Some such arrangements are described below.
Query Processor

One embodiment of the query processor takes its input
from the query buffer that maintains the top-level query dur-
ing its execution. In one embodiment this buffer is stable and
fast to access, since the query processor reads its contents
again and again. As with the other components of this inven-
tion, the query buffer may be implemented in either hardware
or software.

With reference to FIG. 1, one embodiment of the query
processor includes a device 116 as noted above for indicating
that a sub-query has signaled a soft failure. One can imple-
ment the device 116 in hardware or software or a combination
of both. One embodiment of this device is a particular
reserved “result value” that indicates the failure; another is
the setting of a reserved variable or flag to indicate the event.

The general form of the query processor, as embodied in
the query execution unit or engine, is a recursive descent
evaluator that processes a query by first executing its sub-
queries and then combining their results in a specific manner.
FIG. 4 shows the breakdown into dependent sub-queries of
the query of FIG. 2 and the supporting definitions of FIG. 3.
To process a given query or sub-query, the query execution
engine processes its dependent sub-queries and then executes
a primitive action particular to the query. For example, in FIG.
4, the primitive action ‘selector’ takes the results of its first
input (a sub-query, i.e., get descendents 120) and applies a test
predicate (its second input, i.e., having parents with military
service written in short hand as military-parents 122) to each
result, returning those that satisfy the predicate. The code
fragment shown in FIG. 3 defines the first input, get descen-
dents. Similarly, the code fragment shown in FIG. 3 also
defines the test predicate, military-parents. Get descendents
120 itself includes sub-queries, e.g., ‘get x children’ and
‘get-descendents (get x children)’. Thus, the query processor
processes dependent sub-queries such as “get x children’ and
then executes a primitive action such as ‘selector.” The query
execution engine routinely refers to data and programs stored
in the external memory.

10

20

25

30

40

45

60

65

8

The query execution engine may execute sub-queries in
any order and even in parallel; the query restrictions (1) and
(2) above ensure that such variant execution orders yield the
same results.

One embodiment of the specific form of the query execu-
tion engine includes the following two characteristics:

A. in order to maximize severability, the query execution
processes all the sub-queries of a sub-query (or the top
level query) even if one of those sub-queries does not return
normally;

B. in order to ensure that queries are repetitively innocuous
(condition (2) above), query execution may insulate some
external interactions involved in the execution.

The implementation of (A) relies directly on the device (d)
for signaling soft failures, so that the soft failure of a sub
query does not terminate the overall processing of the query.

The implementation of (B) potentially relaxes requirement
(2) above. For example, one special case of restriction (2) is
that the query does not modify the external databases that it is
accessing. This restriction can be relaxed by providing for
rollback of modifications made during query execution. One
way to implement this rollback is by introducing local tables
of modifications to each external database; when a modifica-
tion is made, it is not actually written to the external database
but stored in these local tables. When queries are made sub-
sequently during the processing of the query, the contents of
these local tables are then merged with whatever results come
from the database directly. These local tables are then purged
between iterative re-executions of the query procedure, caus-
ing the “virtual database” (the real database plus modifica-
tions stored in the tables) to be reverted to its original form.
When the query finally runs to completion, the database
changes stored in the local tables are actually written to the
external database.

As described above, one embodiment of the query execu-
tion unit or engine uses a custom interpreter to execute the
query in accordance with restrictions (1) and (2) and to maxi-
mize constraint (3). Embodiments of the invention include
implementations where the optional query rewriter converts
query language into program codes (possibly into some other
language or even the native language of a hardware proces-
sor) that satisfy the same constraints. In this case, the query
rewriter is acting as a conventional compiler to implement the
semantics defined by criteria (1), (2), and (3) above.

One additional concern with regard to the query processor
is the ease with which general-purpose programming lan-
guages can express non-terminating programs. One addition
to the query processor includes provisions for resource limi-
tation so that one embodiment of a query processing system
may terminate a query when the query executes for too long
or uses up excessive system resources. Standard engineering
practice includes various software and hardware measures for
implementing such restrictions.

Database Adaptors
A database adaptor takes a collection of independent data-

base queries, produced by the partial execution of a complex
procedural query, and executes these with respect to an exter-
nal database. A database adaptor may reorder or reorganize
the independent queries or it may simply bundle them into a
single query for the external database. The null case of a
database adaptor simply issues the independent database que-
ries in sequence, but this is unlikely to result in any significant
performance improvement. The database adaptor also
updates the query cache with the results from the external
database; this ensures that, on the next re-execution of the
query, the particular query will not fail and the overall query
will move towards completion.

US 7,966,311 B2

9

FIG. 5 describes the flow chart for one embodiment of a
database adapter shown in FIG. 1. Its inputs 124 include a set
of numeric object identifier (OID) references for which the
adaptor retrieves associated values from a disk file and an
associated table of file positions. The adapter first removes
126 any references that are out of the bounds of the database.
It then sorts 128 the references by file position. Finally, it
iterates 130 over all of the references to read their values from
the disk file and store them in the query cache.

As another example, an adaptor for a network based data-
base might divide the queries among several different remote
servers based on different characteristics of each remote pro-
vider. Some optimization might also be further deferred to the
network based service and whole Boolean queries, for
instance, might be passed to these providers for them to
process optimally. For example, a search that identifies
records or objects with a conjunction of properties (e.g.,
individuals younger than 35 who have had 3 marriages) might
be passed directly to a remote database server, which can
choose an optimal way to execute the query.

This last example indicates that part of the implementation
of the database adaptor may in some cases reside in the
database itself. For example, if one database adaptor referred
to a conventional SQL database, the adaptor could combine
multiple queries into a single complex query, which the SQL
database could optimize as a whole.

The foremost advantage of the database adaptor is the
consolidation of multiple queries into single transactions,
reflecting the latencies typically involved in access to external
services whether networked or device-based. Secondary
advantages derive from optimizations within a collection of
queries (e.g., redundancy, where one basic query is made
repeatedly within the complex query, or interaction, where a
set of separate simple queries about an item can be combined
into a single composite query about the item).

The Query Cache

One embodiment of a query processing system according
to the invention uses the query cache to accumulate database
responses across multiple iterations of a procedural query.
One embodiment of the query cache is a lookup table. The
lookup table: maps a query into a response; can indicate when
a response has not been cached; and can store a query in a list
of queries to be executed. The query cache may do some
simple regularization of queries so that identical queries with
different surface forms may only require one entry in the
cache. For example, such regularization might co-identity
searches for doctors in a particular zip code with a search for
residents of a particular zip code who are doctors. This regu-
larization is a simple version of the static query optimizations
performed by the query rewriting approach (described previ-
ously), which is employed in most modern databases. The
query cache can be implemented by several caches associated
with each individual database but can also be implemented
independently (and local to the query processor).

When an independent cache is available, it can also be used
to separately cache expensive intermediate combinations of
query results, allowing iterative re-executions to proceed
more efficiently through avoidance of repeated calculations.
For instance, one intermediate result could be the intersection
of the results of two sub-queries; this intersection includes
those members that are in both result sets. By caching the
results of such an operation, the combination need only be
executed once (when its sub-queries successfully complete)
over all the re-executions of the top level query.

The actual implementation of the query cache may vary
greatly depending on the physical processing substrate. It is
preferred to have accesses to the query cache proceed as

20

25

35

40

45

60

65

10

quickly as possible and thus, ideally, the query cache should
be able to fit in the processor’s on-die cache or at least on the
main board of the system. In any event, the query cache
should be resident in the system’s primary memory.

In order to maintain a query cache with a small physical
memory footprint (so that it can fit into the on-die cache), one
embodiment uses a two-level cache where the query cache
itself stores strings or object pointers as small integers which
refer (in turn) to an external table where the small integers
map to the actual strings or object addresses.

Persistent Query Caches

There can be substantial value to maintaining the query
cache between individual query executions, given that some
provision is made for keeping the cache up to date with the
actual external database. This means that compound queries
may execute much more quickly by taking advantage of sub-
queries executed by previous queries.

The persistent cache can be kept up to date by a variety of
methods. For instance, if the database adaptor is accessing a
disk file as a database, it can note when the disk file has been
modified and invalidate (or check for consistency) the corre-
sponding elements of the persistent query cache.

In certain embodiments, the persistent cache might also be
limited to a fixed capacity. In such an embodiment, new
values stored in the cache would potentially replace existing
values, based on criteria such as which cached values were
most recently accessed, which are most commonly accessed,
or which took the most time to retrieve originally.
Implementation on Parallel Processors

When embodiments of the invention are implemented on
parallel processors or in parallel threads of execution on a
single processor, there is a challenge with parallel queries
and/or with coordinating separate execute/retrieve cycles
running in separate execution threads. A simple solution to
this challenge is to lock the external databases during the
database access operations that occur after every partial
execution cycle. This is how database accesses would nor-
mally be handled in any multi-threaded environment, ensur-
ing that independent threads do not contend for the same
databases at the same time. Note that using this simple
approach with the described invention improves performance
over normal query execution (where every database access is
performed without delay), because of the optimizations pos-
sible in bundling accesses together and avoiding multiple
transactions and lock/unlock operations.

However, further advantage can sometimes be gained by
waiting for a certain period for any query executions in pro-
cess in separate threads. If these terminate within a particular
period, their data requests can be merged together before
being handed to the database adaptors and then either stored
in a shared query cache or (more likely) separated out into
per-thread query caches to avoid the overhead of lock/unlock
cycles for each cache access.

When there are thread-local query caches and a global
persistent cache, the global persistent cache can be consulted
before actually going to the external database.

An Example

Suppose one has a genealogical database to which one
wishes to apply certain queries. The genealogical database
contains objects describing individuals and their relation-
ships to other individuals. The database also contains other
information about those same individuals. For instance, it
might describe dates of birth and death, employment, military
service, residence, travels, etc.

US 7,966,311 B2

11

Suppose one wants to execute a query whose English form
might be:

Find all the descendants of “Joe Smith” whose parents
were in the military

whose transcription into computer code might look like
this:

(define (get-descendants x)
(choice (get x children) ; This indicates that both options are
explored
(get-descendants (get x children))))
(filter-choices (candidate (get-descendants "Joe Smith"))
(exists 'event "military service" 'subject (get candidate 'parent)))

This code fragment begins by defining a procedure ‘get-
descendants’ which recursively gathers the identified children
of an individual from the database. This procedure is then
used by the ‘filter-choices’ expression, which gets all the
descendant’s of “Joe Smith” and returns only those entries for
which their exists a “military service” event including the
parent of the descendant. This sort of complicated pointer-
following procedure is impossible to express in a simple
query to a standard relational database, but is especially com-
mon for knowledge based operations.

If the database were large, this query would execute each
request for an object or relation independently, taking sub-
stantial computation time and looking up any underlying
resources (for instance disk files) in which the data were
stored.

Using one embodiment of a system and method according
to the present invention, the query would start by processing
both

(get "Joe Smith" children)
(get-descendants (get "Joe Smith" children))

both of which would fail because they require database access
(to lookup the descendants); as a consequence the entire
query would fail, but it would be known that the operation (get
“Joe Smith” children) would need to be performed. It is
performed and then cached. Atthis point the execution is done
again:

=

(get "Joe Smith" children)

(get-descendants (get "Joe Smith" children))
(get "Joe Smith Jr." children)
(get "Mary Jones" children)
(get "George Smith” children)
(get-descendants (get "Joe Smith Jr." children))
(get-descendants (get "Mary Jones" children))
(get-descendants (get "George Smith” children))

where the first operation succeeds but subsequent operations
fail. However, it is now known that execution of:

(get "Joe Smith Jr." children)
(get "Mary Jones" children)
(get "George Smith" children)

is necessary. This is done and the individual queries for the
children of Mary, George, and Joe Jr. can be scheduled opti-
mally. Once their results have been cached, the system pro-
ceeds:

10

15

25

30

35

40

45

50

55

60

12
x] (get "Joe Smith" children)
(get-descendants (get "Joe Smith" children))
X (get "Joe Smith Jr." children)
X (get "Mary Jones" children)
X (get "George Smith” children)

(get-descendants (get "Joe Smith Jr." children))

(get "Joe Smith III." children)

(get-descendants (get "Joe Smith Jr." children))
(get-descendants (get "Mary Jones"” children))

(get "Sally Jones" children)

(get "Tom Jones" children)

(get "John Jones" children)

(get-descendants (get "Mary Jones"” children))
(get-descendants (get "George Smith" children))

;;George Smith had no children, so is not expanded.

Again, many of the later calls fail, but the system knows that
it needs to retrieve:

(get "Joe Smith IIL." children)
(get "Sally Jones" children)
(get "Tom Jones" children)
(get "John Jones" children)

and which, again, it can schedule optimally. Once this is done,
one has the following set of queries and cached values:

[x] (get"Joe Smith" children)

[1 (get-descendants (get "Joe Smith" children))

[x] (get "Joe Smith Jr." children)

[x] (get "Mary Jones" children)

[x] (get "George Smith"” children)

[1] (get-descendants (get "Joe Smith Jr." children))
[x] (get "Joe Smith III." children)

[1] (get-descendants (get "Joe Smith Jr." children))
[1] (get-descendants (get "Mary Jones"” children))
[x] (get "Sally Jones" children)

[x] (get "Tom Jones" children)

[x] (get "John Jones" children)

[1] (get-descendants (get "Sally Jones"” children))
[1] (get-descendants (get "Tom Jones" children))
[1] (get-descendants (get "John Jones” children))
[x] (get-descendants (get "George Smith" children))

;; George Smith had no children

For brevity, one can assume that none of this latter genera-
tion has had children yet, so oneis able to fill out the whole set
of requests and get the response.

This part of the execution made eight requests to the data-
base (calls to ‘get’) but grouped them into four transactions.
In the next phase, the filter operation executes the test condi-
tion

(exists ‘event “military service™ subject (get candidate

‘parent))

for each of the seven values above. Partial execution of each
test fails when the “parent™ field is being fetched (at least in
some embodiments), but the seven requests are all bundled
together at the end. Then, the entire expression is executed
again and the calls to “exist” can be completely executed.
This results in five database calls altogether, which can be
executed together and stored in the query cache. At this point,
the query expression is executed one final time, returning the
individuals matching the request.

In this example, twenty-four retrievals were done in all but
the use of the method caused these to be clustered into six
groups. This clustering can cause performance improvements
when either there are substantial setup costs for each block of

US 7,966,311 B2

13

requests or when the ordering of requests can affect perfor-
mance (as when access to external physical media such as
disks are involved).

Having thus described at least one illustrative embodiment
of the invention, various alterations, modifications and
improvements are contemplated by the invention including
the following: aggressive caching of intermediate values (as
well as database accesses) to make the iterated partial execu-
tions more efficient; maintenance of performance data across
different database adaptors in order to select among alterna-
tives which refer to different databases; and the number of
database adaptors used by the invention may be more or less
than the four illustrated in FIG. 1 (for example, in one
embodiment the query processing system may use only two
database adaptors). Such alterations, modifications and
improvements are intended to be within the scope and spirit of
the invention. Accordingly, the foregoing description is by
way of example only and is not intended as limiting. The
invention’s limit is defined only in the following claims and
the equivalents thereto.

What is claimed is:

1. A system for executing complex procedural queries
across a plurality of databases, the system comprising one or
more processors configured to function as:

a query processor configured to iteratively execute a com-
plex procedural query defined using a general-purpose
functional programming language, the complex proce-
dural query comprising a top-level complex procedural
query and sub-queries;

a set of database adaptors configured to optimize and refer
collections of queries, corresponding to the complex
procedural query, to external databases; and

a query cache in communication with the query processor
and the set of database adaptors, the query cache con-
figured to store results of the external database queries in
the query cache and note unresolved data which the
complex procedural query needs but does not have;

wherein the query processor is configured to detect a soft
failure,

wherein the query processor is configured to execute a
subsequent iteration of the entire complex procedural
query, if unresolved data is noted from a previous itera-
tion of the complex procedural query, using the stored
results,

wherein the complex procedural query is severable such
that at least a first portion of the complex procedural
query can proceed even if a second portion of the com-
plex procedural query fails.

2. The system of claim 1 wherein results in the query cache

persist between queries.

3. The system of claim 2 wherein the query cache is con-
figured to provide a two-level cache, where a query-specific
query cache refers to a global persistent query cache.

4. The system of claim 1 wherein the query processor
comprises:

a query buffer for maintaining the top-level complex pro-

cedural query;

a query execution unit (QEU) in communication with the
query buffer and configured to execute the top-level
complex procedural query and the sub-queries; and

a device in communication with the QEU and with the
query buffer, the device configured to indicate to the
query buffer when at least one of query execution and
sub-query execution results in the soft failure;

such that the system continually executes independent sub-
queries when a given sub-query results in a soft failure;
and

20

25

40

45

50

55

60

65

14

wherein failed sub-queries are referred to the database
adaptors when the execution of the top-level query fin-
ishes.

5. The system of claim 1 wherein the set of database adap-
tors configured to optimize and refer the collections of que-
ries to external databases is configured to modify the collec-
tions of external database queries at subsequent iterations of
the execution of the complex procedural query.

6. The system of claim 1 wherein the set of database adap-
tors configured to optimize and refer the collections of que-
ries to external databases is further configured to access the
query cache to determine if results for at least one of the
collections of external database queries is stored in the query
cache.

7. The system of claim 1 wherein the database adaptors are
configured to provide the results of the external database
queries to the query cache, and to provide information indica-
tive of the unresolved data.

8. The system of claim 1 further comprising an external
memory, wherein the query cache is configured to be in
communication with the external memory.

9. A method for complex procedural query execution, the
method comprising:

a. executing an entire complex procedural query defined
using a general-purpose functional programming lan-
guage, detecting a soft failure, indicative that the execu-
tion of the query resulted in incomplete information, and
noting any unresolved data which the query needs but
does not have;

b. identifying sub-queries to be executed separately;

c. referring unresolved data needs to at least one database
adaptor;

d. storing resulting responses in a query cache for a future
execution; and

e. iteratively executing (a), (b), (c), and (d) using the result-
ing responses until no more soft failures occur,

wherein the complex procedural query is severable such
that at least a first portion of the complex procedural
query can proceed even if a second portion of the com-
plex procedural query fails.

10. The method of claim 9 wherein the complex procedural
query includes a query procedure and wherein the method
further comprises identifying the query procedure by an
object and by an argument of the procedure.

11. The method of claim 9 wherein the query language is
maximally severable.

12. The method of claim 9 wherein iteratively re-executing
(a), (b), (c), and (d) using the resulting responses includes
generating database requests corresponding to the complex
procedural query based on the resulting responses obtained in
at least one earlier iteration of executing the query.

13. A system for processing complex procedural queries,
the system comprising:

a query buffer processor for receiving a complex proce-
dural query, including a plurality of sub-queries, for
iterated execution, wherein the complex procedural
query is expressed using a general-purpose functional
programming language;

an external memory for storing non-persistent program
data and procedures that can be routinely accessed in the
course of query execution;

a query execution unit (QEU) processor in communication
with the query buffer processor and the external
memory, the QEU processor configured to iteratively
execute the entire complex procedural query by execut-
ing the sub-queries of the complex procedural query and
combining results of the sub-queries such that incom-

US 7,966,311 B2

15

plete execution of one sub-query does not rule out
execution of other independent sub-queries;

a device in communication with the QEU processor, the
device configured to signal and respond to soft failures,
which can terminate one sub-query of the complex pro-
cedural query while allowing other independent sub-
queries to proceed;

a hardware query cache in communication with the QEU
processor, the hardware query cache configured to store
known query results for immediate retrieval without
recourse to at least one external database, to return
known query results, and to return a soft failure, indica-
tive that the execution of the complex procedural query
resulted in incomplete information, when results are not
known without recourse to at least one external data-
base; and

aplurality of external database adaptor processors in com-
munication with the hardware query cache, the database
adaptor processors configured to optimize a set of inde-
pendent queries bundled together into a single package,

wherein the QEU processor is configured to execute a
subsequent iteration of the entire complex procedural
query, if a soft failure is returned from a previous itera-
tion of the query, using results of the query obtained in at
least one earlier iteration of the query execution until no
further soft failures occur,

wherein the complex procedural query is severable such
that at least a first portion of the complex procedural
query can proceed even if a second portion of the com-
plex procedural query fails.

10

15

20

25

30

16

14. The system of claim 13 wherein the device is config-
ured to signal a requesting application that the query execu-
tion is complete when a query execution completes without
any software failures.

15. The system of claim 14 wherein the QEU processor is
configured to forward the results of the query execution to a
requesting application when a query execution completes
without any software failures.

16. The system of claim 13 wherein the system further
comprises:

a query rewriter processor in communication with the
query buffer, the query rewriter processor configured to
receive the complex procedural query and to convert
certain query language constructs into a form that the
QEU processor can execute.

17. The system of claim 13 wherein the plurality of data-
base adaptors are configured to provide the known query
results to the hardware query cache, and to provide informa-
tion indicative of the soft failures.

18. The system of claim 13 wherein the hardware query
cache is further configured to be in communication with the
external memory.

19. The system of claim 13 wherein the QEU processor is
configured to be used with a query language that is repeti-
tively innocuous.

20. The system of claim 13 wherein one or more of the
query buffer processor, the external memory, the QEU pro-
cessor, the device, the hardware query cache, and the plurality
of external database adaptor processors are combined in a
single hardware unit.

	Tiffs to PDF

